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Abstract

We develop an algorithm using two coupled parabolic equations
for numerical simulation of wave propagation over long distances. The
coupled parabolic equations are derived from a two mode wave decom-
position. An iterative procedure was used in our numerical algorithm.
The coupling between the two parabolic equations allow us to deal
with inhomogeneities in the medium and capture the back scattering
that are usually neglected in a one way parabolic approximation. We
study stability issues of our numerical algorithm and present numeri-
cal examples.

1 Introduction

Efficient numerical algorithms are important in order to understand wave
propagation in complex media. Resolving the wavelength is one of the basic
sampling conditions for numerical algorithms. However, in many applica-
tions, such as underwater acoustics, communications and remote sensing,
the wave propagates over a long distance which may be several order of
magnitudes compared to the wavelength. If the medium is inhomogeneous
there is an additional characteristic scale corresponding to the correlation
length of the medium inhomogeneities. Wave propagation in a heteroge-
neous medium is thus a multi-scale problem in space and time, which poses
a great challenge for numerical simulations. Here we focus on the simula-
tion of time harmonic waves, that is, we reduce the full wave equation in
space and time to the Helmholtz equation in space only by Fourier trans-
formation in time. The Helmholtz equation gives a boundary value problem
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and it is very expensive to solve with a computational domain that is large
compared to the wavelength. If the wave propagates in a weakly inhomo-
geneous medium, e.g., underwater acoustics or electromagnetic waves in the
atmosphere [7, 8, 11] the Helmholtz equation can be further simplified. In
a situation where the propagation distance is much larger than the trans-
verse dimension corresponding to a narrow angle geometry and when the
back scattering can be neglected the Helmholtz equation can be reduced to
a parabolic equation. The main advantage of the parabolic approximation
is that it gives an initial value problem which is much easier to analyze
and much cheaper to compute. The parabolic equation (PE) approximation
provides an important tool for analysis and computation of wave propaga-
tion. More advanced parabolic approximations have been developed to deal
with back scattering and wide angle geometries. For example the two way
parabolic approximation by Collins [4]. In this important paper the authors
consider a generalization of the one way or outgoing parabolic approximation
to handle medium variations in the range, that is, the propagation direc-
tion. Their approximation is motivated by applications to ocean waveguides
where often the depth variation of the medium parameters is stronger than
the variation in range. The range-dependent medium is approximated by a
sequence of range-independent sections. At each interface the reflected field
is approximated via an iterative technique using the parabolic wave operator.
The reflected field components are then propagated back via the incoming
parabolic approximation. Here our focus is rather on small scale scatterers
with arbitrary geometry and we do not decompose the medium into range
independent sections, thus the parabolic modes couple at all depths, more-
over, we carry out many iterations in range. We start with the Helmholtz
equation and use a wave decomposition as in [1] to derive a system of cou-
pled parabolic equations. We use a bidirectional wave decomposition and
get two coupled parabolic equations. The coupling comes from backscatter-
ing and transverse spreading of the wave. Based on this decomposition, a
straightforward Jacobi type of iterative algorithm can be applied. However,
this iterative algorithm is not stable and will not converge due to the lagged
coupling in the iterative procedure. In this paper we modify these two equa-
tions and develop an efficient algorithm that is as simple as the standard PE
approximation but can better deal with heterogeneities and back scattering.
We consider the Helmholtz equation in 2-dimensions for simplicity. However
the algorithm can easily be generalized to the 3-dimensional case. Numerical
experiments are used to compare our method with the standard parabolic
approximation.

The outline of the paper is as follows, in Section 2 we give a brief review
of the standard parabolic approximation. The coupled parabolic system and



the absorbing boundary condition will be derived in Sections 3-5. We present
our numerical algorithm and numerical results in Section 6. In the appendix
we give the stability analysis.

2 The Parabolic Approximation

We consider the problem of propagation of acoustic signals over large dis-
tances. Let u(x,t) and p(x, t) be the acoustic velocity and pressure satisfying
the equation of continuity of momentum and mass

pu; + Vp =F(x,t), (1)
K'p,+V-u=0, (2)

where t is time, z is depth into the medium and defined so as to increase
with depth, (x,2) = (z,y, 2) are the space coordinates, p is the density, K
is bulk modulus, and the source is F(x,t). We model the medium by p = p
constant and

FPN I ox ¢ € (~00,0]
K (x,2) = { KI;I(X’ 2)1+v(x,2)) z€(0,00).

The function ¥ modulating the compliance corresponds the medium fluc-
tuations. In the case of a stationary random medium it is a zero-mean,
stationary stochastic process whose statistics take on particular forms de-
pending on the assumptions about the medium, whether it is locally layered,
strongly or weakly heterogeneous media and so on [1].

At this stage, the source term is omitted, but it will be taken into account
through the initial conditions for the parabolic equation.

Eliminating u from equations (1) and (2), we get

p
Ap — —pyu = 0.
p Kptt 0 (3)

The time-harmonic version of (3) is the Helmholtz Equation:
Ap+ (1 +v)w*y*p =0, (4)
where

v(x,2) =\ K (x, 2)p,

and p is the Fourier transform of p with respect to time:

P = / peit dt. (5)
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Note that below we suppress the ‘hat’ and that v represents an effective
slowness.

The Helmholtz equation is associated with some specific boundary val-
ues. If the computational domain of this boundary value problem is large
compared to the wavelength, solving the discretized linear system using a di-
rect method may be impossible due to memory constraints. Moreover, since
the linear system is not positive definite, usual iterative methods typically
converge slowly, if at all. The parabolic approximation can be used to deal
with this problem in various settings. The main idea is to neglect the back
scattering and only consider forward going waves. The PE approximation
becomes an initial value problem which significantly reduces the complexity
for both analysis and computation. This approximation is accurate in many
scenarios such as in range dependent ocean wave-guides or in the case of
atmospheric wave propagation.

We are interested in wave propagation mainly in one direction, along the
z axis in our notation. We use the plane wave ansatz

p(x,2) = A(x, 2) exp(ikoz) , (6)
for the solution of Helmholtz Equation:
Ap+w*y*(x,2)(1+v)p =0, (7)

where kg is a reference wave number. The factor exp(ikoz) in (6) represents

a plane wave travelling in the positive z direction and is supposed to take out

the rapid oscillations of p in the z direction; the function A(x,z) captures

the modulation of the plane wave phase and usually varies slowly with z.
Substitution of Equation (6) into Equation (7) gives

0?A ., 0A 9 9 9

ﬁ+2zk0£+ALA+[w7(1+V)_k0]A:01 (8)
with A being the Laplacian in the lateral coordinates x. We next make the
crucial paraxial approximation (small angle approximation) corresponding

to the situation with

0%A ., 0A
ﬁ << 2’&]{50%, (9)
so that we have
. 0A 2,2 2
2iko— + AN LA+ [wy*(1+v) — kj]A = 0. (10)
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This approximation requires that we consider wave propagation in a narrow
beam geometry, not close to the source and that the medium is weakly in-
homogeneous. The resulting equation is called the narrow-angle parabolic
equation (PE). In the PE method we take into account only waves travelling
in the positive z direction; back scattering is neglected, see [7, 8].

3 Decomposition Of Waves In One Dimen-
sional Case

We next aim to extend the parabolic approximation to a strongly range or
‘depth’ dependent medium and consider first the layered or one-dimensional
case. The field is decomposed into outgoing and incoming components. Our
equations are based on a decomposition of the field, instead of an operator
factorization. The parabolic approximation is a special case of our approach.

In the one dimensional case the bulk modulus K = K(z) depends on z
only, the reduced wave equation is now:

P2z + (1 + I/)U)Q’)/Qp = 0, (11)

with v = v(z). Define

where z, is the location of source signal. The phase 7(z) is the travel time
from the source to depth z for a plane wave travelling in the depth direction.
Equation (11) can now be written as:

P2e + (1 +v)w2r2p = 0.
Let the pressure p be decomposed as:
p= A(2)e™" + B(z)e ™. (12)

Note that by writing the pressure in this way we introduced two degrees
of freedom. Therefore, we need an additional constraint on the amplitudes
beyond (12).

The velocity is

U= Z(Aeiwr _ Be—in) _ L(Azeiun' + Bze—iwr)’
p wp

and we make the ansatz



Ae™™ 4+ Bye T = 0. (13)

This is the additional constraint on the amplitudes. With it, the velocity
becomes:

u= (Aein o Befiw’r)'

D IR

From (13), it follows that

A, = —B,e *¥T, (14)
B, = —A,e*™7, (15)

and moreover
(A,, +iwyA,)e™" + (B,, — iwyB,)e™™" = 0. (16)

Combining the above relations and Helmholtz equation (11) we find the
following equations for the amplitudes A and B:

2T, A, + T, A = iwT2v(A 4 Be ") + 1,,Be” T (17)
21,B, + 7,,B = —iw*T2v(Ae*™ + B) + 1,, Ae*T. (18)

We may interpret A and B in the decomposition (12) as amplitudes of
the down- and up-propagating wave modes respectively.

The decomposition that we introduced above means that we replaced the
problem of solving (11) to that of solving the system (17) and (18) and in
order to do so we need to introduce boundary conditions for the amplitudes.
Note that in the case where the medium is homogeneous, with v = 0 and
~ constant, the amplitude equations decouple. The term associated with A
then corresponds exactly to the wave component travelling in the positive
range or depth direction and the term B with the wave component travelling
in the opposite direction. In the general case the wave components couple
and correspond to approximate locally up and down travelling wave terms.

In Section 6 we will introduce an iterative based numerical scheme for
computing approximate solutions to the system (17) and (18).



4  Decomposition In Terms Of Generalized
Plane Wave Components

We consider next the case with waves propagating in a three dimensional
medium with a constant background slowness 7, but with general three di-
mensional medium fluctuations modelled by v. The governing Helmholtz
equation is

Ap+(1+v)w’yp =0,

and we now define

T(z):/ MKL—\KPdS:(Z—Zs)\WQ—M?, and S*¥=k-x+7,
Zs D

with x being the lateral slowness vector. Note that ST is a plane wave phase
corresponding to waves travelling in the spatial direction (k, /72 — ||?). In
the case with a general three dimensional background the phase terms S*
will be solutions of the Eiconal equation associated with the slowness v(x, 2),
see [1].

We decompose the wave into up-ward and down-ward modes as above:

p = A 4+ BeS | (19)
0 = A5 + B, . (20)
In the general case the mode coupling transport equations become:
VSt - VA+ ASTA — iwy?v(A + BeS™—57)
- éALA — R =5 (21)
VS~ - VB + AS™B — iwy*v(B + AT =57))
= éALB — Rte(ST=57) (22)
with
Rt =2V, ST .-V A+ ASTA- éALA,
R :QVLS-VLBA—ASB—éALB,

where A is the transverse Laplacian. In the case that the fluctuations and
the reflected field vanish, (v = 0, B = 0), (21) becomes

VST - VA+ASTA="N A,
w
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which in the high frequency limit gives
2VSt - VA + ASTAy =0,

that is, the leading order transport equation of geometrical optics.

Here, we will consider the generalization of the parabolic case with waves
propagating primarily in the z direction and set K = 0. Then the coupling
transport equations become

2ikA, + A LA+ kvA = —(k*vB+ A, B)e %% (23)
—2ikB,+ A B+ kvB = —(k*vA+ A A)e¥* (24)

with £ = yw.
In the case that the reflected wave vanish, B = 0, (23) becomes

2%kA, + AN A+ K VvA=0,

which is the standard narrow-angle parabolic approximation. On the
other hand, in the case that there is no lateral variation in the amplitudes
we find

2ikA, = —k*v(A+ Be %*),
2ikB, = k*v(Ae*** + B).

These are the transport equations associated with the layered three di-
mensional case which are analyzed in for instance [1] and [10]. A particular
k corresponds to a specific plane wave mode. This variable is the Fourier
variable dual to the lateral space variable x introduced when the wave field
in space and time is transformed into plane wave modes via Fourier trans-
formation with respect to the lateral spatial coordinates. We next continue
our discussion of the system (23) and (24) by introducing specific boundary
conditions and a scheme for numerical approximation of the solution.

5 Boundary Conditions

5.1 Initial Condition For Parabolic Equations

We assume that the scatterer v is compactly supported and is located in a
slab of thickness L, so that k is constant for z < 0 and z > L. The source is
located in the homogeneous medium, at z; < 0. Recall that with B = 0 the
amplitude equation for A is equivalent to the standard parabolic equation.
We impose an initial condition for the down-ward field A at z = 0 and for
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the reflected field B at z = L. At the top, we use a Gaussian form for the
initial data [11]:

x|2
A(x,0) = \/l?oe_%.

Since the medium is homogeneous for z > L and there are no sources
located in this half space we set

B(x,L) =0.

5.2 Artificial Boundary

The scatterer v is located in infinite homogeneous medium. We truncate
the domain by adding PML (Perfectly Matched Layer) artificial boundary
in the lateral dimensions. The idea is to introduce an exterior layer at the
artificial boundary in such a way that all plane waves are totally absorbed,
and no reflection occurs at the boundary [2]. For simplicity, we now assume
two spatial dimensions corresponding to one lateral dimension. In order
to introduce the artificial boundary condition we return to the Helmholtz
equation:

Doz + Doz + K2 (L + v(z, 2))p = 0.

In the matched layer we change this equation to obtain damping of the plane
wave modes. We introduce the governing equations

0%p w 0, w Op 9
he s 1 —
) LRt = 0,

022 o —1iwox

where o(x) > 0 in the artificial domain giving damping of the plane wave
modes, whereas o(z) = 0 in the physical domain giving the Helmholtz equa-
tion there. Denote

w

s(z) = ——<—,
o(x) —iw

then with the PML, the coupling transport equations can be written

2ikA, + 5%(2)Agy + k*vA + s5()s' (1) A,

= —(k’vB + 5*(2) By + 5(2)s'(2) By )e 2, (25)
—2ikB, + $*(2) Byy + k*vB + s(2)s'(z) B,
= —(k*vA + s%(2) Ay + 5(2) ' (1) A, )e***. (26)

9



The ideal case of using these two coupled parabolic equations for the for-
ward wave field A and backward wave field B in numerical computations
would be that we can solve them in the form of Jacobi iteration, i.e., solve
A with current B and then solve B with current A iteratively. This would
reduce the computation of the Helmholtz equation into the computation of a
sequence of parabolic equations. However, as we will show in the appendix,
this iterative procedure is not stable for evanescent modes in the lateral di-
rection. In another word, without coupling A and B together simultaneously
in the propagation direction evanescent modes can grow exponentially. Since
we are interested in the narrow angle wave propagation in the z-direction,
we drop the lateral scattering terms A B (or A; A ) when we solve for
A(z,z) (or B(z,z)) in (23) (or (24)). Consider the equation (23). In the
homogeneous case with v = 0 the terms involving the reflected field B will be
lower order correction terms to the paraxial approximation. We will consider
regimes where there is significant back-scattering due to the scatterer v and
therefore retain the term involving v in the coupling part of equations (23)
and (24). With PML included we have the following two coupled parabolic
approximations (with one lateral dimension):

2k A, + 5%(2) Aus + KV A + 5(2)s'(z) Ay = —K?vBe 2 (27)
—2ikB, + SQ(Z)wa + k2B + 8($)S’($)Bz — —/{:2I/A€2ikz, (28)

|2
A(z,0) = \/kioe_%; B(z,L) =0.

We next introduce a numerical scheme for approximation of the solution
to this system.

6 Numerical Solution

We will solve the system (27, 28) by iteration. In the first step we compute an
approximation for A using (27) with B = 0. Next, we solve for B using (28)
with the computed approximation for A. This procedure is then repeated
with the updated values for A and B. Note that it is unstable to solve the
system (25, 26) iteratively, we show this in the appendix. Observe also that
in the homogeneous case with v = 0 the iteration converges after the first
step with B = 0 and A solving the standard narrow-angle parabolic equation.

We now discretized the above iteration by introducing finite differences
for the derivatives. The discretized field variables are denoted A" and B[",
where [ and m are grid indices in x and z, respectively. Assuming the field A
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is known at step m, we proceed to determine the field at step m + 1. For B,
we do it backward, i.e., determine the field at step m from the m + 1 step.

We use Crank-Nicolson scheme to solve equation (27). At the half grid
point (2, 2,,,.1), we have

URAL (21 2y 1)+ KVA@L 2y 1) + @) ATt 2gy)  (29)
+S($Z)S'($l)A;c(.Tl, Zm—l—%) = _k21/B(xl, 2m+%)6—21kzm+% '
We use the following finite difference formulae
A x ,Z + A T ’z
Aw(l'l,an_%) ~ ac( l m) 5 a:( l m—l-l)
| Ap AR - Ap, - aAny
4h ’
Am-i—l —Am
Az(xl,zm+%) ~ %l’
A ) Ae (€1, 2m11) + Ava(T1, 2m)
zz\ L1, Zm+% ~ 5
o AR AR AR+ AR, 247 —24p
2h? )
APt AP
A(ﬂ?l,Zm_}_%) ~ lfa
Bm—|—1 Bm
B(x1, 241) & %’

with 7 = 2z, — 2m_1 and h = z; — ;1. By multiplying both sides of (29)
by 4h? and using these symmetric finite difference approximations we can
express the solution in vector form as
+1
m+3 Aﬁ11
[ul’ ) : ’ wl] A;n—i— (30)

m—+1
Al—l—l

Am
,\m—l—% 57:1 2,92 m—|—% m+1 m _Zikzm+l

= [~u,0, 2,—w]| 4] —2k*h*y, *(B" + B")e 7,
m

Al

where
u = (28%*(x) — s(x)s' (z)h),
o2 = Sikh; + k2RI — 4s2(ay),
w = (25%(x) + s(x)s' (21)h)

m h2 m+3
0, 2= gik— — 2k*h*y, ARt 45%(xy).
T
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To complete the formulation we finally collect the local solutions given
by (30) into a global matrix solution over the mesh points in depth,

SN -
(%] 2 wll [ A;’H—l ]
m+z
Uy Uy 2 Wy Amtl
Am+1
N—1
wall Am+1
m+3 | 4N
[ om+i 1 i r omtl _—
U1 — AT " I(Bl + B"")
A+ 5 m+ = m+1
—Uy Dy 2 —wsy AT ik vy (B3 +By")
} ~2ikz 1 }
= : — 2k%*h%e mt3 :
n m—|—% m m+1
—WN-1 an Un_1 1(BN—1 + By')
Mty N m+s 1
I A A - | vy T(BR+ByT)

The coefficient of B, in (28) is negative of that of A, in (27), however,
since we solve B from bottom to top, we will determine B at level m from
level m + 1. We use the following approximation

m m+1
Bznz, )= 20 2B
¥4 3] 1fn-|—5 - —_r .

Then, we obtain the same matrix formulation as when solving for A (modulo
the sign of the phase):

m—l—% i _
(%1 w1 B™
m+i L
Uz Uy T Wy BT
Bm
WN_1 N-1
m+3 By
uN ’UN - -
[ ,\m-f—l T - m_|_l
ot BT v (AP + AT
1 1
—uy Dy P —wy Byt vy T2 (A 4 AT
p— .. .. .. : _ 2k2h262ikzm+% .
Bm+1 m+% m m+1
—WN-1 B%I'll VUN—1 1(AN—1 + AR5
Am—+3 N m+5 1
i —uy Uy 7 | il | vy (AR 4 AR
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6.1 Numerical Example

We test our algorithm by considering a sound signal propagating through a
homogeneous medium with some imbedded compact scatterers.

Several imbedded scatterers are located in the domain, they are strongly
anisotropic with dimensions about 1300m in the vertical direction and 195m
in the horizontal dimension. The signal speed in the homogeneous medium
is 330m/s and the wavelength is about 13m.

Our computational domain contains 20 wavelength (horizontal) and 200
wavelength (vertical). We use 10 grid points per wavelength in both di-
rections, whereas on the left and the right sides, we use 25 grid points for
the PML medium. The medium and the computational domain is shown as
Figure 1.

After 15 iterations, we get the solution for the coupled parabolic equa-
tions. The solutions of Helmholtz equation, Parabolic approximation and
Coupled Parabolic approximation are shown in Figures 2-4 respectively.

In Figure 5 we show p at the center of the domain along the propagation
direction in z. The solid line is the numerical solution of the Helmholtz
equation. The solution of the parabolic equation is shown by the dotted line
in the top plot. The solution of the coupled parabolic equations (C-PE) using
the algorithm described in the previous section is shown by the dotted line in
the bottom plot. Note that our C-PE solution is very close to the Helmholtz
solution whereas the PE solution fails to capture the oscillations in p that is
due to the imbedded scatterers which give a significant back-scattering.

7 conclusion

In this paper we develop an algorithm using two coupled parabolic equations
to simulate wave propagation over long distance. The two coupled parabolic
equations are derived from a wave field decomposition. Both forward propa-
gation field and backward propagation field as well as their interactions are
captured. Our method can deal with strong inhomogeneities with arbitrary
geometry in the medium and the computational cost is comparable to that
of the parabolic approximation.

Appendix

Here we show the potential instability when solving the full system (23, 24)
by iteration. We simplify the system by considering only one transverse
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variable z, i.e.,

2ikA, + E°VvA + Agy + (Byw + E*vB)e 2% =0, (31)
—2ikB, + k?vB + By + (Age + K*vA)e®™* =0, (32)

Introduce a new variable: D(z,z) = A(z,2) + e ?*2B(z, 2). We then get a
new system:

A, = ;—k(am +k%)D (33)
D, = 2ik(A — D) (34)

We solve D from the second equation,
D = [D(0) + 2ik / A(s)e2ik3 ]2k (35)
0

Plug D into the first equation we have

pod

o (0us + KV)[A(0) + B(0) + 2ik /0 " A(s)eP*dsle* . (36)

Differentiate the above equation in z and if the medium is homogeneous,
ie., v=0, we get

A, +2kA, + A, =0 (37)
Use Fourier mode ansatz, A(z, z) = a(z)e™, we get
a,, + 2ika, — n%a =0

for which the characteristic equation has two roots:
rt = —ik +vn2 — k2

We can see that evanescent modes (n > k) become unstable when we march
in either direction of z. The instability is caused by the transverse Laplacian.
In heterogeneous media evanescent modes can be generated by scattering. In
numerical computations, roundoff errors or artificial boundary conditions can
also generate spurious evanescent modes and cause instability. Only if A and
B are solved simultaneously with two appropriate point boundary conditions.
(which is the case for Helmholtz equation), the evanescent modes are under
control. That is why an iterative procedure for the coupled parabolic equa-
tions (23, 24) for A and B is numerically unstable, which can be also shown
by a similar but messier Fourier mode analysis on the discretized equations.
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Figure 3: Parabolic Equation

Figure 4: Coupled Parabolic Equation
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Figure 5: The pressure computed by the C-PE algorithm (dotted line in
bottom plot) and the PE algorithm (dotted line in top plot) compared to the
Helmbholtz solution (solid lines).
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